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The US is not sufficiently investing in its ailing road system

21% of the US
highways are in
poor condition

INFRASTRUCTURE
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Investment in Surface Transportation
Is Not Keeping Up With Needs:
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Governments are being forced to do more with less

EheNeworkTimes  Governments Look for New Ways to
Feb 14,2013 Pay for Roads and Bridges
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Gas Taxes Fail to Keep Up Because most states do not tie their gasoline tax to inflation, taxes are
worth less over time. Increased fuel efficiency also means consumers are using less gas.

Sources: Amencan Fetroleurn Insttute; Tax Policy Canter
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Infrastructure spending is at an all-time low

More Potholes? This Might Be Why. El]f ﬁf“] ﬂﬂﬂ{ Eh:.'lmfﬁ

Infrastructure spending as a percentage of . . .
G.D.P. has fallen to the lowest level in decades.  Public Works Funding Falls as Infrastructure Deteriorates

By BINYAMIN APPELBAUM  AUC. & 2017
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A water main and sewer renovation project in Somerville, Mass., this month. Public works projects have
slowed across the country. Brian Snyder/Reuters 4



Life cycle cost analysis is a key element of addressing

infrastructure funding gap
N

o

>

G RAND cHALLENGE W

Reduce life cycle costs by 50% by 2025

Areas of focus

* Resilience

* |nnovation

* Life cycle costs
 Performance standards

*$4.6 trillion needed in infrastructure investment by 2025

$2 trillion is unfunded Slide 5
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Asset management allocation tools are critical to
economically-efficient infrastructure

Solutions to Raise the Grade

Fix the federal Highway Trust Fund by raising the federal motor fuels tax, and explore alternative,
long-term funding mechanisms.

Increase investment at all levels of government to reduce the backlog of rehabilitation needs.

Use asset management best practices to prioritize projects
and improve the condition, security, and safety of assets
while ' minimizing costs over its entire life span.




Tools for economically-efficient management of pavement
networks

Competitive Paving Prices

Life Cycle Cost Analysis




Does the presence of competition between material
substitutes impact pavement material prices?

Statistical analyses 10-Year Average Percent Spending on AC
of Oman BidTabs™
data using these
parameters:

* Project size (quantity)

o State market size
(annual spending)

» Price adjustment clauses
(asphalt only)

* Number of bidders
(Intra-lndUStry Competltlon) AC spending ratio

* Dominant market share — F—
(% spending on AC; °5% - 100% "
inter-industry competition)

/

*2005-2015, 47 states, 298k pay items, 164k jobs Slide 8




Statistical model shows large impact of inter-industry competition

Asphalt Unit-Price ($/ton)

Concrete Unit-Price ($/CY)

60 65 70 75 80 120 140 160 180 200 220
Project Size — - Project Size — —
State Market Size — —
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Price Adjustment Clause I
Asphalt only

Number of Bidders Hl ——

Number of Bidders i 0 I Intra-industry competition

Intra-industry competition
Dominant Market Share — - Dominant Market Share | ——— —
Inter-industry competition Inter-industry competition

Slide 9
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Lower unit-prices for bid items are correlated with increased
concrete spending

material unit costs by this amount:

...would decrease paving

For a state spending an average of 5% on concrete, an increase to this
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Increased competition can translate into more paving

Annual paving tonnage for a state with a $100M budget

Thousands
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Tools for economically-efficient management of pavement
networks

Competitive Paving Prices

Life Cycle Cost Analysis

Asset Management a

CCCCC

7



LCCA - Life-cycle cost analysis:
Method for evaluating total costs of ownership

Real Cost

Transform individual pavement
expenditures over time into...

Life-Cycle Cost

...total life-cycle
cost

Present Value

Slide 13
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CSHub created probabilistic cost estimates for entire life-cycle

Cash Flow

Agency:
* Unit-price of inputs

(Agency:

* Quantity of inputs

* Future construction prices
* Maintenance timing

User:

\.* Traffic delays & fuel loss

* Quantity of inputs

\

/

/

Construction Operation
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CSHub conducted LCCAs for a wide range of scenarios

3 Traffic Levels

Rural local
street/highway

Rural state highway

Urban interstate

,, Several framing
T3 conditions

. a
A [ ) cCLC
" freeze
» [ ]
Pavement design and maintenance schedules .

developed by Applied Research Associates (ARA), Inc

Pavement designs

Maintenance

schedules

Design life @
CSHub

Analysis pe”(s)%e - /



Life cycle matters
Future costs can be significant

Total life-cycle costs for a state highway in

Florida
Initial
Future construction
maintenance costs
and 47%
rehabilitation _—

costs
53%

Flexible pavement design developed by Applied Research Associates (ARA), Inc,:
AADTT 1k/day; 4 lanes; Wet-no-freeze-FL; FDOT-based rehabilitation schedule;
Analysis period = 50 years. Slide 16
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Context matters
Costs vary with location, traffic level, & pavement design

Interstate,_"’ri'éid design

Local highway, rigid design

Rehab - -
costs ‘ - Rehab U nitial
2% Initial { costs ™ - Init
costs M% Ly COS'S
—— 98% \_ \ o 89%
/)
1
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Life cycle perspective alters relative competitiveness
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There is significant variation in initial costs

Distribution of Unit Price of Concrete for Pavement Projects
30%

12 months of project bid data
from the CalTrans database

20%

What is driving

variation in costs?

10%

Event Occurrence as a Percentage

0% I I I I I I I I I I . I I I I . I I l MIT
20 60 100 140 180 220 260 300 340 380 420 460 500 540 580 cs';

Source: Caltrans Unit Price of Concrete ($/CY) Slide 19




Capture drivers of initial cost and variation through statistical models

Concrete material prices highly dependent on quantity used on job

8
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&
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5 Other factors can also be 'capture'd in statisticel modeLs CCl .
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Probabilistic analysis provides insight on relative risks

Frequency

Probabilistic Life-Cycle Cost Including Price Projections

100%

75%

)
S
X

25%

0%

10%

Initial cost is
usually major
driver of variation
In comparative
pavement
LCCAs

2.00

250 3.00 3.50 4.00
Net Present Value of LCC (million $) cs-;
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Tools for economically-efficient management of pavement
networks

Competitive Paving Prices

Life Cycle Cost Analysis




FHWA has issued new performance management rules due to
MAP-21

FHWA motivation: improve decision-making through
performance-based planning and programming

Key elements of asset management plans:

» Life cycle planning

* Risk management analysis "
&

» 10-year financial plan

U.S. Department of Transportation

Federal Highway
Administration

B

Slide 23



Pavement network performance management process

Implement
strategies to
meet targets

Measure
performance

Set targets

% Good Pavement Which strategies?
% Poor Management At what cost?
System

CSHub

How to allocate funds to obtain best performance at lowest cost? ()
7

Slide 24



Many approaches to allocate funds

Pavement Segment | Pavement Condition o |
Index * How to prioritize which

A 45 segments to repair?

B 47 * Will targets be met?

C o1 » Which strategies should
D 52 be used?

E o6 :

- % * Many short term fixes?
G 67 * Few long-term fixes?

An optimization modeling approach is required to answer these questions: @
7

Performance-Based Planning Side 25



Goal of MIT asset management research: improve allocation decisions

Performance-based planning through
Performance-based budget allocation

Current &

mistorical Projection of Make decisions

network to allocate
performance resources

pavement
network data

Objective: prioritize projects that maximize performance and minimize cost

B
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Why is this a challenge?

The scale of the problem for state pavement networks is daunting

Making decisions about ...

: : lane-miles
... which preservation, overlay, or

reconstruction activity Dozens of technologies to
maintain or replace pavements
to apply to

at
... what time (now or future)?

+ Future budget and road
condition = ?

Budget Allocation

Allocating limited funds to the set of activities that meet the
goals of the network operator

What is the best
olan?

MIT
CSHub

Slide 27 /




How to Overcome the Challenge?
Practical network allocation involves two interlinked tasks

Segment-level Decision

* What is the best POR strategy for this segment?
(This will involve a sequence of POR activities over
time)

Network-level Decision (Allocation)

* What set of best POR strategies will give us the best
network performance but still be within our budget?

Iwﬂ

Slide 28



Implementing Two Stage Budget Allocation Algorithms

PMS Data
Current & historical
pavement network data
= (5]
j . A
]ﬁ m - %\ Segment Best POR Alternatives
‘éi*?\
o < @ AN WELECIE b, oicct Performance
(30 e \ — |dentify best POR
@ u) "'}\1 Pres2 Over3 alternatives for each
segment

Pres3 Recon4

| Allocate Resources
P Select a set of best
{ POR options for

£) geolegy.com network glglr-]ub

A\
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Case study - lowa U.S. route system

 |lowa PMS 2017
« 9550 lane miles

 Pavement type: asphalt, asphalt overlay composite, and concrete
« Initial traffic-length weighted IRI (TWIRI) = 1.65 m/km
« Initial traffic-length weighted PCI (TWPCI) = 76.3

IRI distribution for U.S. route network in lowa
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PCI distribution for U.S. route network in lowa
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Treatment strategies

Reconstruction

AC
Preservation
Materials Treatment types Segment evaluation period
« Short-term: preservation + thin overlay mIT

CSHub

Slide 31 /

* Long-term: thick overlay + reconstruction

*AC: asphalt concrete, PCC: Portland cement concrete



Excess fuel consumption of vehicles caused by pavement design
and maintenance

Pavement-vehicle interaction (PVI

Pavement Deflection

7

Deflection &
Roughness

N\

.

Excess Fuel
Consumption

J

Economic &
Environmental
Impacts

Slide 32

Currently
iIncluded
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Key conclusion: leverage four strategies

Sufficient budget

Mix of pavement types

Mix of short and long-term fixes

Long evaluation periods




Sufficient budget: increasing budget level improves network
performance and reduces GHG emissions

Annual mean TWPCI
good 90

— |ow
— medium
—— high

\

80

—_—

TWPCI
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bad 6o

Year

Cumulative GHG (ton) for 20 years

Total GHG emissions for 20

years

55000
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o o
) o
o o

low medium high
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Mix of pavement types: Diverse materials improve network
performance and reduce GHG emissions

« AC only strategy: maintain more pavement area, but treatment effects are short
« PCC only strategy: treatment effects are long, but maintain less pavement area

TWPCI after 20 years Average annual GHG emissions
good,, 5
g —— AC only & 60000
5 85 —— PCC only S —— AConly
2 —— both g >>000 —— PCC only
3 %0 £ 50000 — both
=
s 7> 2 45000
g @)
@ 70 T 40000 \
O C
s 65 & 35000
- g
bad 60 S 30000
120 125 130 135 140 145 150 g
<<

120 125 130 135 140 145 150
Budget ($M) Budget ($M) b

*AC: asphalt concrete, PCC: Portland cement concrete Slide 35



Mix of fixes: Diverse treatment types improve network
performance and reduce GHG emissions

Q
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« Short-term strategy: maintain more pavement area, but treatment effects are short
« Long-term strategy: treatment effects are long, but maintain less pavement area

TWPCI after 20 years Average annual GHG emissions

90 60000
—— short-term —— short-term
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Long evaluation periods: Treatment actions with long-term

benefits improve network performance and reduce emissions

bad 2.0

1.8
1.6
1.4

1.2

Traffic-length weighted IR

good 1.0

Segment analysis period (SAP) represents the period to evaluate benefits of treatments
SAP=5: treatments with short-term benefits are preferable
SAP=10: treatments with long-term benefits are preferable

TWIRI after 20 years

—— SAP=5
—— SAP=10

—

120 125 130 135 140 145 150
Budget ($M)

Annual average GHG emissions
60000

—— SAP=5
>>000 —— SAP=10

50000

45000
40000

35000

30000
120 125 130 135 140 145 150

Budget ($M)

Slide 37 -
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Key conclusion: leverage four strategies

Sufficient budget

Mix of pavement types

Mix of short and long-term fixes

Long evaluation periods

Benefits increase with higher budgets



Normalized IRI

Data analysis can be challenging

Evolution of many randomly selected segments and their IRI over time
250

200

150 Many segments
exhibit a decrease in
their IRl over time

100

What is signal?
What is noise?

0
0 2 A 6 8 10 12 CSHub
Time into Future ”

/
{
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Measure pavement roughness using Carbin app

Carbin
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Crowdsourced data can support asset management

FIX-MY-ROAD

and pave a better future for OUR CLIMATE

q

:

y
i
.‘|
;

http://www.fixmyroad.us/

o 156,391 miles
%', 28 countries
" 10,002,420 data points

155,274 miles

Our Story

|
Take Action Good Average  Fair Poor


http://www.fixmyroad.us/

Thank you
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