

# Concrete Pavement Thickness Design

presented by Steve Waalkes, P.E., MCA's Director of Engineering – W. Mich. Tuesday, April 14, 2020–10:00 to 11:00 am Eastern

## **Topics Covered Today**

Basic Principles of Concrete Pavement Thickness Design for:

- Highways
- Streets
- Parking Lots
- Industrial / Trucking Facilities

Available guidance documents / software Design Examples





### **Differences in How Pavements Carry Loads**



Concrete's rigidity spreads the load over a large area and keeps pressures on the subgrade low.



## Pavement Design Principle #1:

#### <u>Stress</u> / Fatigue



- Compressive strength: ~4000 psi
- Flexural strength: ~600 psi



## Pavement Design Principle #1:

#### Stress / Fatigue



- Limit stresses to reduce fatigue due to repeated loadings
- Design slab to account for certain amount of fatigue at design life



## Pavement Design Principle #2:

#### **Deflection / Erosion / Pumping**



- Better support (higher k-value) will lower deflections
- Load transfer will lower deflections



## Pavement Design Principle #2:

#### **Deflection / Erosion / Pumping**



- Non-erodible base (agg. instead of soil) will help limit erosion/pumping/faulting
- Load transfer will help too



## **Concrete Pavement Thickness Design**

- Directly related to the amount of truck traffic
- Also:
  - Subgrade (soil) and base layers
  - Concrete strength
  - Load transfer between slabs





## **Concrete Pavement Thickness Design**

- Basic inputs you need:
  - Design life (typ. 20+ yrs)
  - Traffic (ADT, % trucks)
  - Subgrade / base (soil type, agg. thickness)
  - Concrete strength (flexural)
  - Reliability (typ. 80% to 95%)





## Design Methodologies, Publications, Guides, Software, Programs, etc.



## **Concrete Pavement Design Methodologies**

- AASHTO 1993 Pavement Design Procedure
- 1984 PCA / ACPA StreetPave
- Pavement ME
- Westergaard analysis

$$\sigma_c = \frac{3P}{h^2} \left[ 1 - \left( \frac{a_1}{l} \right)^{0.6} \right]$$

$$\sigma_e = \frac{0.572P}{h^2} \left[ 4 \log_{10} \left( \frac{l}{b} \right) + 0.359 \right]$$

$$\sigma_{i} = \frac{0.316P}{h^{2}} \left[ 4 \log_{10} \left( \frac{l}{b} \right) + 1.069 \right]$$
$$b = \sqrt{1.6a^{2} + h^{2}} - 0.675h$$



## <u>Highways</u>

- AASHTO 93
  - WinPAS
- Pavement ME
  - \$\$,\$\$\$
- StreetPave
  - www.pavementdesigner.org





## Roads / Streets

- StreetPave
  - www.pavementdesigner.org
- AASHTO 93
  - WinPAS
- Pavement ME
  - \$\$,\$\$\$







## Parking Lots

- StreetPave
  - www.pavementdesigner.org
- ACI 330R-08
  - guide
- AASHTO 93
  - WinPAS





## Industrial / Trucking

- StreetPave
  - www.pavementdesigner.org
- ACI 330.2R-17
  - guide
- Westergaard analysis
  - spreadsheet





$$\sigma_{i} = \frac{0.316P}{h^{2}} \left[ 4 \log_{10} \left( \frac{l}{b} \right) + 1.069 \right]$$
$$b = \sqrt{1.6a^{2} + h^{2}} - 0.675h$$



# Design Examples

## <u>Highway</u> – using AASHTO 93 / WinPAS



## Highway Example

#### 20,000 ADT; 7% trucks



Concrete Agg. base Subgrade modulus = 3500 psi

Other design inputs & decisions: Design Life; Reliability/Deviation; Concrete Strength & Elasticity; Dowels/Edge Support; Agg. Base Thickness; Serviceability



## Highway Example – Design Inputs

- 10,000,000 ESALs (18-kip equivalent single axle loads)
  - Roughly equal to 20,000 ADT; 7% trucks; 20-year design
- 90% reliability; 0.35 overall deviation
- 670 psi flexural strength; 4,200,000 psi elastic modulus
- Doweled joints (J = 2.7)
- k-value = 185 psi/in; (3500 psi subgrade modulus w/ 6" agg. base)
- $C_d = 1.0$ ; Initial Serviceability = 4.5; Terminal Serv. = 2.5



## Highway Example – AASHTO 93 Thickness Design

#### WinPAS software:

| 🚯 Rigid Pavement Design                    |                  |               |
|--------------------------------------------|------------------|---------------|
| Rigid Design Inputs                        |                  | Cross Section |
| PCC Thickness                              | 8.92 inches      | s             |
| Design ESAL                                | 10,000,000       | <u>K</u>      |
| Reliabilty                                 | 90.00 percer     | nt 💦 🧟        |
| Overall Deviation                          | 0.35             |               |
| Modulus of Rupture                         | 670.0 psi        |               |
| Modulus of Elasticity                      | 4,200,000.0 psi  |               |
| Load Transfer, J                           | 2.70             |               |
| Mod. Subgrade Reaction, k                  | 185.0 psi/in     |               |
| Drainage Coefficient                       | 1.00             |               |
| Initial Serviceability, Po                 | 4.50             |               |
| Terminal Serviceability, Pt                | 2.50             |               |
| Solve For<br>Pavement Thicl<br>8.92 inches | s <u>Solve</u> F | or            |

#### **Recommended Design:**

- 9" PIM concrete (3500HP)
- 6" agg. base (21AA crushed conc.)
- Dowels
- Tied concrete shoulders

#### MDDT designs typ. range from 9" to 13"

# **Design Examples**

## <u>Street/Local Road</u> – using pavementdesigner.org



## Street / Road Example

#### Minor Arterial: 10,000 ADT; 5% trucks



## Concrete Agg. base Subgrade modulus = 3500 psi

Other design inputs & decisions: Design Life; Reliability/% Slabs Cracked; Concrete Strength & Elasticity; Fibers/Edge Support; Agg. Base Thickness



## Street / Road Example – Design Inputs

- 4-Lane Minor Arterial; 10,000 ADT; 5% trucks; 20-year design
  - 50% directional split; 90% in design lane (right lane)
- 80% Reliability; 10% Slabs Cracked
- 670 psi flexural strength; 4,200,000 psi elastic modulus
- No macrofibers in mix; Tied curb & gutter
- k-value = 189 psi/in; (3500 psi subgrade modulus w/ 6" agg. base)



## Street / Road Example – pavementdesigner.org

#### **Project-Level Inputs:**

#### **Pavement Structure:**







## Street / Road Example – pavementdesigner.org

#### Summary:



#### **Recommended Design:**

- 6.5 inches of concrete
- 6" agg. base (21AA crushed conc.)
- Tied curb & gutter
- 12 foot joint spacing



## Typ. Michigan Concrete Road/Street Designs

- Residential
  - 4"-6" concrete, 3500 psi min.
  - 4" to 6" agg. base
- Collector, Business
  - 5"-7" concrete, 3500 psi min.
  - 4" to 6" agg. base
- Arterial, Industrial
  - 6-9" concrete, 4000 psi min.
  - 4" to 8" agg. base

 $\Rightarrow$  3 to 50 trucks/day  $\rightarrow M_R = 650 \text{ psi}$  $\rightarrow k = 125 \text{ psi/in}$  $\Rightarrow$  50 to 700 trucks/day  $\rightarrow$  MR = 650 psi  $\rightarrow k = 125 \text{ psi/in}$  $\Rightarrow$  300 to 1500 trucks/day  $\rightarrow$  MR = 650 psi \* NOTE: "Truck" = any  $\rightarrow k = 150 \text{ psi/in}$ heavy vehicle, i.e. delivery trucks, buses, etc.



# **Design Examples**<u>Parking Lot</u> – using ACI 330R-08



## Parking Lot Example

#### Car parking: ~1 truck/day



# Concrete Agg. base



Subgrade modulus = 3500 psi

Other design inputs & decisions: Agg. Base Thickness; Concrete Strength



## Parking Lot Example – ACI 330R-08

#### Traffic:

| 1. Car parking areas and access lanes                                                                          | s—Category A                        |                             |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------|
| 2. Snopping contor entrance and serv                                                                           | vice lanes —Category                | В                           |
| 3. Bus parking areas, city and school<br>Parking area and interior lanes—C<br>Entrance and exterior lanes—Cate | buses<br>Category B<br>gory C       |                             |
| 4. Truck parking areas-Category B.                                                                             | , C, or D                           |                             |
| Truck type                                                                                                     | Parking areas and<br>interior lanes | Entrance and exterior lanes |
| Single units (bobtailed trucks)                                                                                | Category B                          | Category C                  |
|                                                                                                                |                                     | C                           |

#### Subgrade / Base:

Table 3.1—Subgrade soil types and approximate support values (Portland Cement Association 1984a,b;

| Type of soil                                                         | Support | k, psi/in. | CBR        | R        | SSV        |
|----------------------------------------------------------------------|---------|------------|------------|----------|------------|
| Fine-grained soils in which silt and clay-size particles predominate | Low     | 75 to 120  | 2.5 to 3.5 | 10 to 22 | 2.3 to 3.1 |
| Sanus and the savel mixtures with moderate amounts of silt and clay  | Medium  |            | 4.5 to 7.5 | 29 to 41 | 3.5 to 4.9 |
| Sand and sand-gravel mixtures relatively free of plastic fines       | High    | 180 to 220 | 8.5 to 12  | 45 to 52 | 5.3 to 6.1 |

#### Table 3.2—Modulus of subgrade reaction k<sup>\*</sup>

| Subgrade k    |       | Sub-base      | thickness     |        |
|---------------|-------|---------------|---------------|--------|
| alue, psi/in. | 4 in. | 6 in.         | 9 in.         | 12 in. |
| 5.0           | 1     | Granular aggr | egate subbase |        |
| 50            | 65    | 75            | 85            | 110    |
| 100           | 130   | 140           | 160           | 190    |
| 200           | 220   | 230           | 270           | 320    |
| 300           | 320   | 330           | 370           | 430    |



## Parking Lot Example – ACI 330R-08

|                      |                            | k = 500  psi/in. (CBR = 50; $R = 86$ )                                                                |     |     | k = 400 psi/in. (CBR = 38; $R = 80$ ) |     |     | k = 300  psi/in. (CBR =26; $R = 67$ ) |     |     |       |     |     |
|----------------------|----------------------------|-------------------------------------------------------------------------------------------------------|-----|-----|---------------------------------------|-----|-----|---------------------------------------|-----|-----|-------|-----|-----|
| MOR, psi:            |                            | 650                                                                                                   | 600 | 550 | 500                                   | 650 | 600 | 550                                   | 500 | 650 | 600   | 550 | 500 |
|                      | A (ADTT=1)                 | 4.0                                                                                                   | 4.0 | 4.0 | 4.0                                   | 4.0 | 4.0 | 4.0                                   | 4.0 | 4.0 | 4.0   | 4.0 | 4.5 |
| Traffic<br>category* | A (ADTT = 10)              | 4.0                                                                                                   | 4.0 | 4.0 | 4.5                                   | 4.0 | 4.0 | 4.5                                   | 4.5 | 4.0 | 4.5   | 4.5 | 4.5 |
|                      | B (ADTT = 25)              | 4.0                                                                                                   | 4.5 | 4.5 | 5.0                                   | 4.5 | 4.5 | 5.0                                   | 5.5 | 4.5 | 4.5   | 5.0 | 5.5 |
|                      | B (ADTT = 300)             | 5.0                                                                                                   | 5.0 | 5.5 | 5.5                                   | 5.0 | 5.0 | 5.5                                   | 5.5 | 5.0 | 5.5   | 5.5 | 6.0 |
|                      | C (ADTT = 100)             | 5.0                                                                                                   | 5.0 | 5.5 | 5.5                                   | 5.0 | 5.5 | 5.5                                   | 6.0 | 5.5 | 5.5   | 6.0 | 6.0 |
|                      | C (ADTT = 300)             | 5.0                                                                                                   | 5.5 | 5.5 | 6.0                                   | 5.5 | 5.5 | 6.0                                   | 6.0 | 5.5 | 6.0   | 6.0 | 6.5 |
|                      | C (ADTT = 700)             | 5.5                                                                                                   | 5.5 | 6.0 | 6.0                                   | 5.5 | 5.5 | 6.0                                   | 6.5 | 5.5 | 6.0   | 6.5 | 6.5 |
|                      | $D (ADTT = 700)^{\dagger}$ | 6.5                                                                                                   | 6.5 | 6.5 | 6.5                                   | 6.5 | 6.5 | 6.5                                   | 6.5 | 6.5 | 6.5   | 6.5 | 6.5 |
|                      |                            | k = 200 psi/in. (CBR = 10; R = 48) (k = 100 psi/in. (CBR = 3; R = 18) k = 50 psi/in. (CBR = 2; R = 5) |     |     |                                       |     |     |                                       |     |     | (= 5) |     |     |
|                      | MOR, psi:                  | 650                                                                                                   | 600 | 550 | 500                                   | 650 | 600 | 550                                   | 500 | 650 | 600   | 550 | 500 |
|                      | A (ADTT=1)                 | 4.0                                                                                                   | 4.0 | 4.0 | 4.5                                   | 4.0 | 4.5 | 4.5                                   | 5.0 | 4.5 | 5.0   | 5.0 | 5.5 |
|                      | A (ADTT = 10)              | 4.5                                                                                                   | 4.5 | 5.0 | 5.0                                   | 4.5 | 5.0 | 5.0                                   | 5.5 | 5.0 | 5.5   | 5.5 | 6.0 |
|                      | B (ADTT = 25)              | 5.0                                                                                                   | 5.0 | 5.5 | 6.0                                   | 5.5 | 5.5 | 6.0                                   | 6.0 | 6.0 | 6.0   | 6.5 | 7.0 |
| Traffic              | B (ADTT = 300)             | 5.5                                                                                                   | 5.5 | 6.0 | 6.5                                   | 6.0 | 6.0 | 6.5                                   | 7.0 | 6.5 | 7.0   | 7.0 | 7.5 |
| category*            | C (ADTT = 100)             | 5.5                                                                                                   | 6.0 | 6.0 | 6.5                                   | 6.0 | 6.5 | 6.5                                   | 7.0 | 6.5 | 7.0   | 7.5 | 7.5 |
|                      | C (ADTT = 300)             | 6.0                                                                                                   | 6.0 | 6.5 | 6.5                                   | 6.5 | 6.5 | 7.0                                   | 7.5 | 7.0 | 7.5   | 7.5 | 8.0 |
|                      | C (ADTT = 700)             | 6.0                                                                                                   | 6.5 | 6.5 | 7.0                                   | 6.5 | 7.0 | 7.0                                   | 7.5 | 7.0 | 7.5   | 8.0 | 8.5 |
|                      | $D(ADTT = 700)^{\dagger}$  | 7.0                                                                                                   | 7.0 | 7.0 | 7.0                                   | 8.0 | 8.0 | 8.0                                   | 8.0 | 9.0 | 9.0   | 9.0 | 9.0 |

Recommended Design:

- 4.0 inches of concrete
- 4" agg. base (21AA crushed conc.)

\*ADTT = average daily truck traffic. Trucks are defined as vehicles with at least six wheels; excludes panel trucks, pickup trucks, and other four-wheel vehicles, Refer to Appendix A. k = modulus of subgrade reaction; CBR = California bearing ratio; R = resistance value; and MOR = modulus of rupture.

<sup>†</sup>Thickness of Category D (only) can be reduced by 1.0 in. (25 mm) if dowels are used at all transverse joints (that is, joints located perpendicular to direction of traffic). Note: 1 in. = 25.4 mm; 1 psi = 0.0069 MPa; and 1 psi/in. = 0.27 MPa/m.



## Typ. Michigan Concrete Parking Lot Designs

- Car parking
  - 4"-5" concrete, 3500 psi min.
  - 4" to 6" agg. base
- Drive, Perimeter Lanes
  - 5" concrete, 3500 psi min.
  - 4" to 6" agg. base
- Truck Areas
  - 6-7" concrete, 3500 psi min.
  - 4" to 8" agg. base

 $\Rightarrow$  1 to 2 trucks/day  $\rightarrow M_R = 650 \text{ psi}$  $\rightarrow k = 125 \text{ psi/in}$  $\Rightarrow$  Up to 20 trucks/day  $\rightarrow$  MR = 650 psi  $\rightarrow k = 125 \text{ psi/in}$  $\Rightarrow$  100 to 700 trucks/day  $\rightarrow$  MR = 650 psi \* NOTE: "Truck" = any  $\rightarrow k = 125 \text{ psi/in}$ heavy vehicle, i.e. delivery trucks, buses, etc.



# **Design Examples**

## <u>Industrial Facility</u> – using pavementdesigner.org



## Industrial Example

#### Log Storage / Sorting Yard: Front Loader (CAT 986H)



Concrete Agg. base Subgrade modulus = 3500 psi

Other design inputs & decisions: Agg. Base Thickness; Concrete Strength & Elasticity



## Industrial Example – Design Inputs

- 4 wheels; 130,000 lbs GVW; 90 psi tire pressure
- 670 psi flexural strength; 4,200,000 psi elastic modulus
- k-value = 189 psi/in; (3500 psi subgrade modulus w/ 6" agg. base)



## Industrial Example – pavementdesigner.org

#### **Project-Level Inputs:**

#### **Pavement Structure:**







## Industrial Example – pavementdesigner.org

#### Summary:



#### **Recommended Design:**

- 8.5 inches of concrete
- 6" agg. base (21AA crushed conc.)
- 15 foot joint spacing



# **Design Examples**

## Truck Loading/Parking Area – using ACI 330.2R-17



## Truck Loading / Parking Area Example



Other design inputs & decisions: Agg. Base Thickness; Concrete Strength

Thickness tables in ACI330.2R-17 based on 30-year design, 85% reliability, 15% slabs cracked



## Truck Area Example – ACI 330.2R-17

#### Subgrade:

| Soil type                                           | Support | Typical <i>k</i> -values, pc<br>(MN/m <sup>3</sup> ) |
|-----------------------------------------------------|---------|------------------------------------------------------|
| A. Fine grained with high amounts of silt/clay      | Low     | 75 to 120 (20 to 34)                                 |
| B. Sand and sand-gravel with moderate silt/clay     | Medium  | 130 to 170 (35 to 49)                                |
| C. Sand and sand-gravel with little or no silt/clay | High    | 180 to 220 (50 to 60)                                |

#### Base:



|               | Soil laver                           | Thickness of unbound granular subbase |                   |                   |                    |  |  |  |
|---------------|--------------------------------------|---------------------------------------|-------------------|-------------------|--------------------|--|--|--|
| Soil<br>type* | k-value, pci<br>(MN/m <sup>3</sup> ) | 4 in.<br>(100 mm)                     | 6 in.<br>(150 mm) | 9 in.<br>(225 mm) | 12 in.<br>(300 mm) |  |  |  |
| А             | 100 (27)                             | 130 (35)                              | 140 (38)          | 160 (43)          | 190 (52)           |  |  |  |
| В             | 150 (41)                             | 170 (40)                              | 185 (50)          | 215 (58)          | 255 (69)           |  |  |  |
| С             | 200 (54)                             | 220 (60)                              | 230 (62)          | 270 (73)          | 320 (87)           |  |  |  |



## Truck Area Example – ACI 330.2R-17

Table 4.7.3k—Thickness (*d*) and joint spacing (JS) for over-the-road truck category major arterial: with dowels in contraction joints; k = 150 pci (41 MN/m<sup>3</sup>)

| No. of            |                | Modulus of rupture, psi (MPa) |                |          |                |          |  |  |
|-------------------|----------------|-------------------------------|----------------|----------|----------------|----------|--|--|
| trucks<br>per day | 550 (3.8)      |                               | 65             | 0 0 4.5) | 750 (5.2)      |          |  |  |
| design            | <i>d</i> , in. | Max. JS,                      | <i>d</i> , in. | Max. JS, | <i>d</i> , in. | Max. JS, |  |  |
| lane              | (mm)           | ft (m)                        | (mm)           | ft (m)   | (mm)           | ft (m)   |  |  |
| 100               | 8.0            | 15                            | 7.0            | 14       | 6.5            | 13       |  |  |
|                   | (200)          | (4.6)                         | (180)          | (4.3)    | (165)          | (4.0)    |  |  |
| 200               | 8.0            | 15                            | 7.5            | 15       | 7.0            | 14       |  |  |
|                   | (200)          | (4.6)                         | (190)          | (4.6)    | (180)          | (4.3)    |  |  |
| 500               | 8.5            | 15                            | 7.5            | 15       | 7.0            | 14       |  |  |
|                   | (215)          | (4.6)                         | (190)          | (4.6)    | (180)          | (4.3)    |  |  |
| 1000              | 8.5            | 15                            | 8.0            | 15       | 7.0            | 14       |  |  |
|                   | (215)          | (4.6)                         | (200)          | (4.6)    | (180)          | (4.3)    |  |  |

#### **Recommended Design:**

- 7.5 inches of concrete
- 6" agg. base (21AA crushed conc.)
- 15 foot joint spacing
- Doweled joints



## **Concrete Thickness Design Summary**

- Highways: AASHTO 93 (WinPAS: <u>www.acpa.org</u>)
- Streets/Roads: <u>www.pavementdesigner.org</u>
- Parking Lots: ACI 330R (<u>www.concrete.org</u>)
- Industrial: <u>www.pavementdesigner.org</u>
- Trucking: ACI 330.2R (<u>www.concrete.org</u>)

or just contact Steve Waalkes <u>swaalkes@miconcrete.net</u> 616-633-9629



## **Questions?**

swaalkes@miconcrete.net 616-633-9629

#### ALSO, PLEASE SEND <u>SUGGESTIONS</u> FOR ADDITIONAL CONCRETE WEBINAR TOPICS!

For the current webinar schedule: <a href="https://info.miconcrete.org/lunch-and-learn">https://info.miconcrete.org/lunch-and-learn</a>

