

Codes, Standards and Specifications for Concrete

David Hollingsworth - Director of Technical Services/Training

PDF handouts of slides: https://info.miconcrete.org/virtual-learning

Codes, Standards and Specifications for Concrete

Codes, Standards and Specifications for Concrete

There are a number of codes, standards and specifications that are either required or can be used for reference when developing project specific concrete requirements. The list includes, but is not limited to, the following:

International Building Code

International Residential Code

American Concrete Institute

301 - Specifications for Structural Concrete

318 – Building Code Requirements for Structural Concrete

332 - Residential Code Requirements for Structural Concrete

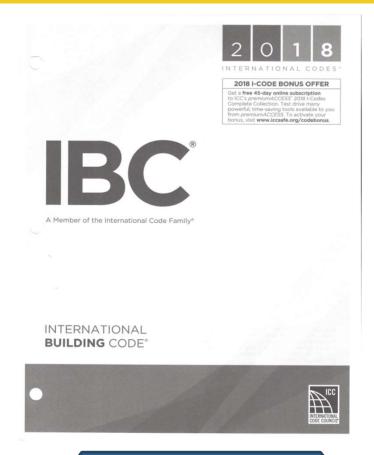
MDOT Standard Specifications

County Specifications – Wayne County, Dakland County

Local requirements

Definitions

Mix Design


Mixture characteristics are selected based on the intended use of the concrete, the exposure conditions, the size and shape of members and the physical properties of the concrete (such as strength) required for the structure. In short, what do you need?

Mix Proportioning

The selection of material proportions to produce a concrete that will satisfy the mix design requirements. A properly proportioned mix should possess acceptable workability; durability, strength and uniform appearance of hardened concrete; economy. In short, how do we make it?

This subject will be addressed in a future webinar.

SECTION 1904 DURABILITY REQUIREMENTS

1904.1 Structural concrete. Structural concrete shall conform to the durability requirements of ACI 318.

Exception: For Group R-2 and R-3 occupancies not more than three stories above grade plane, the specified compressive strength, f'_{c} , for concrete in basement walls, foundation walls, exterior walls and other vertical surfaces exposed to the weather shall be not less than 3,000 psi (20.7 MPa).

1904.2 Nonstructural concrete. The registered design professional shall assign nonstructural concrete a freeze-thaw exposure class, as defined in ACI 318, based on the anticipated exposure of nonstructural concrete. Nonstructural concrete shall have a minimum specified compressive strength, f'_{c} of 2,500 psi (17.2 MPa) for Class F0; 3,000 psi (20.7 MPa) for Class F1; and 3,500 psi (24.1 MPa) for Classes F2 and F3. Nonstructural concrete shall be air entrained in accordance with ACI 318.

310.3 Residential Group R-2. Residential Group R-2 occupancies containing *sleeping units* or more than two *dwelling units* where the occupants are primarily permanent in nature, including:

Apartment houses

Congregate living facilities (nontransient) with more

than 16 occupants

Boarding houses (nontransient)

Convents

Dormitories

Fraternities and sororities

Monasteries

Hotels (nontransient)

Live/work units

Motels (nontransient)

Vacation timeshare properties

310.4 Residential Group R-3. Residential Group R-3 occupancies where the occupants are primarily permanent in nature and not classified as Group R-1, R-2, R-4 or I, including:

Buildings that do not contain more than two *dwelling units*Care facilities that provide accommodations for five or
fewer persons receiving care

Congregate living facilities (nontransient) with 16 or fewer occupants

Boarding houses (nontransient)

Convents

Dormitories

Fraternities and sororities

Monasteries

Congregate living facilities (transient) with 10 or fewer occupants

Boarding houses (transient)

Lodging houses (transient) with five or fewer guest rooms and 10 or fewer occupants

Category	Severity	Class	Condition
	Not applicable	F0	Concrete not exposed to freezing- and-thawing cycles
F	Moderate	F1	Concrete exposed to freezing-and- thawing cycles and occasional exposure to moisture
Freezing and thawing	Severe	F2	Concrete exposed to freezing-and- thawing cycles and in continuous contact with moisture
	Very severe		Concrete exposed to freezing-and- thawing and in continuous contact with moisture and exposed to deicing chemicals

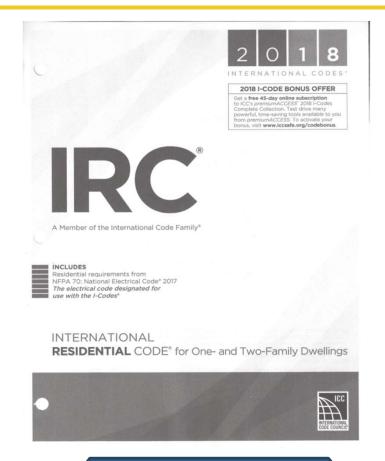

CODE

TABLE 4.3.1 — REQUIREMENTS FOR CONCRETE BY EXPOSURE CLASS

Expo- sure Max. f_c' , Class w/cm psi		f'c.	Additional minimum rec	uirements
•			Air content	Limits on cementi- tious materials
F0	N/A	2500	. N/A	N/A
F1	0.45	4500	Table 4.4.1	N/A
F2	0.45	4500	Table 4.4.1	N/A
F3	0.45	4500	Table 4.4.1	Table 4.4.2

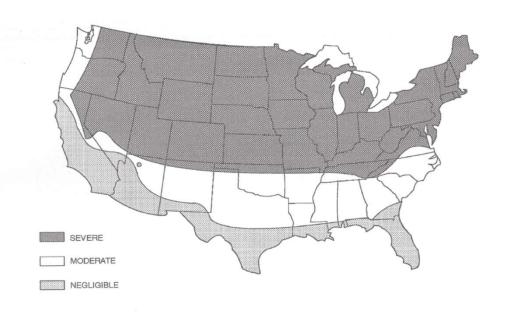
2018 International Residential Code

2018 International Residential Code

R402.2 Concrete. Concrete shall have a minimum specified compressive strength of f'_c , as shown in Table R402.2. Concrete subject to moderate or severe weathering as indicated in Table R301.2(1) shall be air entrained as specified in Table R402.2. The maximum weight of fly ash, other pozzolans, silica fume, slag or blended cements that is included in concrete mixtures for garage floor slabs and for exterior porches, carport slabs and steps that will be exposed to deicing chemicals shall not exceed the percentages of the total weight of cementitious materials specified in Section 19.3.3.4 of ACI 318. Materials used to produce concrete and testing thereof shall comply with the applicable standards listed in Chapters 19 and 20 of ACI 318 or ACI 332.

2018 Residential Building Code

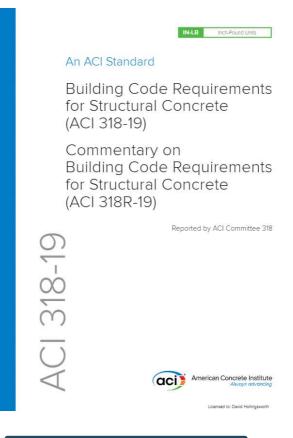
TABLE R402.2 MINIMUM SPECIFIED COMPRESSIVE STRENGTH OF CONCRETE


	MINIMUM SPECIFIED COMPRESSIVE STRENGTH ^a (f' _c) Weathering Potential ^b				
TYPE OR LOCATION OF CONCRETE CONSTRUCTION					
	Negligible	Moderate	Severe		
Basement walls, foundations and other concrete not exposed to the weather	2,500	2,500	2,500°		
Basement slabs and interior slabs on grade, except garage floor slabs	2,500	2,500	2,500°		
Basement walls, foundation walls, exterior walls and other vertical concrete work exposed to the weather	2,500	3,000 ^d	3,000 ^d		
Porches, carport slabs and steps exposed to the weather, and garage floor slabs	2,500	3,000 ^{d, e, f}	3,500 ^{d, e, f}		

For SI: 1 pound per square inch = 6.895 kPa.

- a. Strength at 28 days psi.
- b. See Table R301.2(1) for weathering potential.
- c. Concrete in these locations that is subject to freezing and thawing during construction shall be air-entrained concrete in accordance with Footnote d.
- d. Concrete shall be air-entrained. Total air content (percent by volume of concrete) shall be not less than 5 percent or more than 7 percent.
- e. See Section R402.2 for maximum cementitious materials content.
- f. For garage floors with a steel-troweled finish, reduction of the total air content (percent by volume of concrete) to not less than 3 percent is permitted if the specified compressive strength of the concrete is increased to not less than 4,000 psi.

2018 International Residential Code



- a. Alaska and Hawaii are classified as severe and negligible, respectively.
- b. Lines defining areas are approximate only. Local conditions may be more or less severe than indicated by region classification. A severe classification is where weather conditions result in significant snowfall combined with extended periods during which there is little or no natural thawing causing deicing salts to be used extensively.

FIGURE R301.2(4)
WEATHERING PROBABILITY MAP FOR CONCRETE^{a, b}

ACI 318-19 Building Code for Structural Concrete

ACI 318 Building Code for Structural Concrete

TABLE 4.2.1 — EXPOSURE CATEGORIES AND CLASSES

Category	Severity	Class	Cond	lition		
	Not applicable	F0	Concrete not expo and-thawing cycles			
_	Moderate	F1	Concrete exposed to freezing-and- thawing cycles and occasional exposure to moisture			
Freezing and thawing	Severe	F2	Concrete exposed thawing cycles and contact with moist	d in continuous		
	Very severe	F3	Concrete exposed to freezing-and- thawing and in continuous contact with moisture and exposed to deicin chemicals			
			Water-soluble sulfate (SO ₄) in soil, percent by mass*	Dissolved sulfate (SO ₄) in water, ppm [†]		
s	Not applicable	SO	SO ₄ < 0.10	SO ₄ < 150		
Sulfate	Moderate	S1	0.10 ≤ SO ₄ < 0.20	150 ≤ SO ₄ <1500 Seawater		
	Severe	S2	0.20 ≤ SO ₄ ≤ 2.00	1500 ≤ SO ₄ ≤ 10,000		
	Very severe	S3	SO ₄ > 2.00	SO ₄ > 10,000		
P Requiring	Not applicable	P0	In contact with wat permeability is not			
low permeability	Required	P1	In contact with wat permeability is req			
	Not applicable	CO	Concrete dry or promoisture	otected from		
C Corrosion	Moderate	C1	Concrete exposed not to external sou	to moisture but rces of chlorides		
protection of reinforce- ment	Severe	C2	Concrete exposed an external source deicing chemicals, water, seawater, or sources	of chlorides from salt, brackish		

Residential Code Requirements for Structural Concrete (ACI 332-14) and Commentary

Reported by ACI Committee 332

Table 5.2.1—Exposure categories and classes

Category	Severity	Class	Condition						
Not applicable RF0		RF0	Concrete not exposed to freezing-and-thawing cycles						
RF	Moderate	RF1	Concrete exposed to moisture but not likely to be in a sat and-thawing cycles	Concrete exposed to moisture but not likely to be in a saturated condition when exposed to freezing and-thawing cycles					
freezing and thawing	Severe	RF2	Concrete exposed to moisture and with the potential of b to freezing-and-thawing cycles	Concrete exposed to moisture and with the potential of being in a saturated condition when exposed to freezing-and-thawing cycles					
Project III	very severe RF3 rate		Concrete exposed to moisture and application of deicing rated when exposed to freezing-and-thawing cycles	Concrete exposed to moisture and application of deicing chemicals with the potential of being saturated when exposed to freezing-and-thawing cycles					
lu lum See	. 1991 1. 02		Water-soluble sulfate (SO ₄) in soil, percent by mass*	Dissolved sulfate (SO ₄) in water, ppm [†]					
2 A 43B	Not applicable	RS0	SO ₄ < 0.10	SO ₄ < 150					
RS sulfate	Moderate	RS1	$0.10 \le SO_4 < 0.20$	$150 \le SO_4 < 1500$ Seawater					
nahasi eri s	Severe	RS2	$0.20 \le SO_4 \le 2.00$	$1500 \le SO_4 \le 10,000$					
and the	very severe	RS3	SO ₄ > 2.00	SO ₄ > 10,000					
D.Ct	Not applicable	RC0	Concrete dry or protected from moisture						
RC [‡] corrosion protection of	Moderate	RC1	Concrete containing structural steel reinforcement and ex- sources of chlorides	sposed to moisture but not to external					
reinforcement	Severe	RC2	Concrete containing structural steel reinforcement and ex- chlorides from deicing chemicals, salt, brackish water, se						

Table 5.3.2—Exposure categories and classes

Exposure class	Maximum slump*	Minimum f_c' , psi		Additional minimum requirements							
				Air content		Limits on cementitious materials					
RF0	6	2500		N/A							
RF1	5	3000		Table 5.4.1							
RF2	5	3500		Table 5.4.1							
RF3	4	4000	- ' I 1.b - '1 15 11	Table 5.4.1	Table 5.4.2						
			(Cementitious materials†—ty	pes	Calcium chloride admixture					
			ASTM C150/C150M	ASTM C595/C595M	ASTM C1157/C1157M	amenium mill- 7.1 Let					
RS0	6	2500	No type restriction	No type restriction	No type restriction	No restriction					
RS1	6	2500	II	IP(MS), IS (<70) (MS)	MS	No restriction					
RS2	5	3000	V [‡]	IP (HS) IS (<70) (HS)	HS	Not permitted					
RS3	5	3000	V + pozzolan or slag§	IP (HS) + pozzolan or slag§ or IS (<70) (HS) + pozzolan or slag cement§	HS + pozzolan or slag cement§	Not permitted					
			Maximum water-solub	le chloride ion (Cl ⁻) content	in concrete, percent by we	eight of cement in reinforced concre					
RC0	6	2500			1.00	radi in tau nombro en la citat					
RC1	6	2500			0.30	Construings and enforced in Lord					
RC2	4	4000			0.15	- 49E-1-179GD					

Table 5.4.1—Total air content for concrete assigned to exposure category RF

	Total air	content, percent
Nominal maximum aggregate size, in.*	Exposure Class RF1	Exposure Classes RF2 and FR3
3/8	6	7.5
1/2	5.5	7
3/4	5	6
1	4.5	6
1-1/2	4.5	5.5
2†	4	5
3†	3.5	4.5

Table 5.4.2—Requirements for concrete subject to exposure class RF3

Cementitious materials	Maximum percent of total cementitious materials by weight*
Fly ash or other pozzolans conforming to ASTM C618	25
National States of States National Nati	50
Silica fume conforming to ASTM C1240	10
Total of fly ash, silica fume, slag, and other pozzolans	50 [†]
Total of fly ash, silica fume, slag, and other pozzolans	35 [†]

MICHIGAN DEPARTMENT OF TRANSPORTATION

2012 STANDARD SPECIFICATIONS FOR CONSTRUCTION

				oncrete Pavement Mixtures Minimum Class Design Strength (a)							
			Flexural Strength (psi)				Compressive Strength (psi)				
Concrete	Section Number	Cement Content (d,h)									
Grade (b, c, g)	Reference (i)	lb/cyd	sacks	3days	7days	14days	28days	3days	7days	14days	28days
P-NC	<u>603</u> , <u>801</u>	658	7.0	550	600	_	650	2,600	3,000	_	3,500
P1M (f)	<u>602, 603</u>	470 – 564	5.0 - 6.0	1000	550	600	650	(400)	2,600	3,000	3,500
P1	602, 603, 801, 802,	564	6.0		550	600	650	_	2,600	3,000	3,500
	803, 810	526 (e)	5.6	51 51 52	000	000	000		2,000	0,000	0,000
DO	602, 803, 804, 806,	517	5.5			550		_	2,200	2,600	3,000
P2	808, 810, 813, 814, 819	489 (e)	5.2	_	500	550	600				
M	Commercial for each pour										
Х	Unless othe substituting up to 20% b	1.0 lb of fly a									

So what do the concrete grades mean?

PIM High Performance Concrete Pavement

All MDOT trunkline highways that are paved with concrete

- will be called 3500 HP in new spec book

P1 Concrete pavement

Old standard still used for low traffic roadways, small projects and local agency work

- will be called 3500 in new spec book

P2 Concrete shoulders

Used for concrete shoulders but can also use P1 or P1M

- will be called 3000 in new spec book

P-NC Concrete pavement Repair

Joint and full-depth repairs of concrete pavements

NC requires non-chloride accelerator, 7 sack is standard

- will be called 3500 in new spec book

M Commercial Concrete

Typically used for non-MDOT concrete outside the right-of-way

	·	Conc		ole 701-1A ure Mixtures by	Slump	gt) - 12		
	ľ					lump (in)		
		Cement co			Type MR, F, or G Admixtures (g)			
Concrete Grade	Section Number Reference (i)	cubic yard (b, c)		Type A, D or	Before	After Admixture	After Admixture	
(e, h)		lb	sack	Admixture	Admixture	(Type MR)	(Type F or G)	
D (a)	706, 711, 712	658 (d)	7.0	0-3	0-3	0-6	0 – 7	
S1	705	611	6.5	3-5	0 – 3	3-6	3 – 7	
T	705, 706	611	6.5	3-7	0 – 4	3-7	3 – 8	
CO (=)	401, 705, 706, 712,	564	6.0	0 0	0 0	0 6	0.7	
S2 (a)	713, 801, 802, 803, 810	526 (d)	5.6	0 – 3	0 – 3	0 - 6	0 – 7	
00	400 400 000 004 000	517	5.5	0.0	0 0	0 0	0 7	
S3	<u>402, 403, 803, 804, 806</u>	489 (d)	5.2	0 – 3	0 – 3	0 - 6	0 – 7	

		Concrete St	10.12	ole 701-1B tures by St	rength of C	oncrete			
Concrete	Cement content per cubic yard (b, c)		Minimum Strength of Concrete (f)						
Grade	Reference				lexural, (ps	i)	Con	npressive, (osi)
(e, h)	(i)	lb	sack	7 day	14 day	28 day	7 day	14 day	28 day
D (a)	706, 711, 712	658 (d)	7.0	625	700	725	3,200	4,000	4,500
S1	705	611	6.5	600	650	700	3,000	3,500	4,000
T	705, 706	611	6.5	550	600	650	2,600	3,000	3,500
00 (-)	401, 705, 706, 712,	564	6.0	550	200	050	0.000	0.000	0.500
S2 (a)	713, 801, 802, 803, 810	526 (d)	5.6	550	600	650	2,600	3,000	3,500
00	517 5.5	5.5	500		000	0.000	0.000	0.000	
S3	<u>402, 403, 803, 804, 806</u>	489 (d)	5.2	500	550	600	2,200	2,600	3,000

12SP-604A - QC/QA PCC for Local Agency Projects

Table 1: Minimum Mix Design Requirements for Concrete

Table II	Millimitalli	mix Deoig	ii itequii ei	nento ioi	o o i i o i e t e		
Mix Design Parameter			Gr	ade of Concr	ete	60	
	P1M (a,b,e)	P1 (a,b)	D,DM (a,b,e)	Т	S1 (a)	S2,S2M (a,b,e)	S3/P2 (a)
Lower Specification Limit (LSL) (28-day compressive, psi)	3500	3500	4500	3500	4000	3500	3000
Rejection Limit for an Individual Strength Sample Test Result	3000	3000	4000	3000	3500	3000	2500
Maximum Water/Cementitious Ratio (lb/lb) (c)				0.45			
Cementitious Material Content (lb/yd3) (d)	470-564	517-611	517-658	517-611	517-611	517-611	489-517
Air Content (percent) (f)				5.5-8.5			
Slump (inch) (max.)		18		(g)			31
Section Number Reference (h)	602, 603	602, 603, 801, 802, 803, 810	706, 711, 712	706, 718	705	401, 706, 712, 713, 718, 801, 802, 803, 810, 819	402, 403, 602, 803, 804, 806, 808, 810, 813, 814

12SP-604B - QA/QC for PCC

Table 1: Minimum Mix Design Requirements for Concrete

	Williamum	mix Deoig							
Mix Design Parameter	Grade of Concrete								
	P1M (a,b,e)	P1 (a,b)	D,DM (a,b,e)	Т	S1 (a)	S2,S2M (a,b,e)	S3/P2 (a)		
PWL Applications									
Lower Specification Limit (LSL) (28-day compressive, psi)	3500	3500	_	_	_	_	_		
Rejection Limit for an Individual Strength Sample Test Result	2500	2500							
Non-PWL Applications					-		•		
Lower Specification Limit (LSL) (28-day compressive, psi)	3500	3500	4500	3500	4000	3500	3000		
Rejection Limit for an Individual Strength Sample Test Result	3000	3000	4000	3000	3500	3000	2500		
All Concrete Applications				4::	•		•		
Maximum Water/Cementitious Ratio (lb/lb) (c)	0.45								
Cementitious Material Content (lb/yd3) (d)	470-564	517-611	517-658	517-611	517-611	517-611	489-517		
Air Content (percent) (f)	5.5-8.5								
Slump (inch) (max.)	(g)								
Section Number Reference (h)	602, 603	602, 603, 801, 802, 803, 810	706, 711, 712	706, 718	705	401, 706, 712, 713, 718, 801, 802, 803, 810, 819	402, 403, 602, 803, 804, 806, 808, 810, 813, 814		

So what do the concrete grades mean?

21	Foundations and Piles
	- will be called 4000 in new spec book
S 2	Bridge Structure, Curb/Gutter and Driveways
	- will be called 3500 in new spec book
S2M	High Performance Bridge Structure
	High traffic, high profile/long life bridges, bridge approach slabs
	- will be called 3500 HP in new spec book
23	Sidewalks

- will be called 3000 in new spec book

- D Bridge Deck/Railing
 - will be called 4500 in new spec book
- DM High Performance Bridge Deck and Railings
 - High traffic, high profile bridge decks and railings or where longer life is required
 - will be called 4500 HP in new spec book
- Tremie Concrete
 - Underwater placements, usually for bridge foundation work
 - will be called 3500 in new spec book

12SP-604B ASR

A. Alkali-Silica Reactivity. Provide documentation to the Engineer that the concrete mixture does not present the potential for deleterious expansion caused by alkali-silica reactivity (ASR). Provide current ASR test results (valid for 2 years from completion of testing), for the fine aggregate that is proposed to be used in the concrete, from an independent testing laboratory proficient in ASR testing. The independent testing laboratory must certify in writing, including a signed statement that all testing was conducted in accordance with the designated standard test procedures, described herein. Test results must conform to the specified criterion for one of the following standard test methods. ASR testing is not required for concrete pavement repairs and temporary concrete pavements. Use the Rounding Method described in ASTM E 29 when determining significant digits for reporting expansion test results.

12SP-604B ASR

- (1) Method 1. ASTM C 1293. Concrete Prism Test. If the expansion of concrete prisms is not greater than 0.040 percent (rounded to the nearest 0.001 percent) after 1 year, the fine aggregate is considered non-deleterious to ASR and may be used in the JMF.
- (2) Method 2. ASTM C 1567. Mortar Bar Test. If no previous test data are available for the fine aggregate that shows it is resistant to ASR using Method 1, above, replace 25 to 40 percent of the Portland cement in the concrete mixture with a supplementary cementitious material. A blended cement meeting the requirements of ASTM C 595 containing the above Portland cement and supplementary cementitious material proportions may also be used.

12SP-604B ASR

(3) Method 3. ASTM C 1260. Mortar Bar Test. If the expansion of the mortar bars is less than 0.10 percent (rounded to the nearest 0.01 percent) at 14 days of immersion, the fine aggregate is considered non-deleterious to ASR and may be used in the concrete without the need for ASR mitigation.

WCDPS (03-28-2012)

Wayne County Department of Public Services
SPECIAL PROVISION
FOR
CONCRETE MIXTURE REQUIREMENTS

1 of 12

FHWA:APPR:04-06-2012

General

The concrete mixtures for this project shall be in accordance with Sections 601 and 701 of the MDOT Standard Specifications for Construction, and in accordance with Wayne County Standard Plan, P series, except as modified herein.

Table 1 Minimum Mix Design Requirements for Concrete

Mix Design Parameter	Grade of Contents								
	D (a)	S1	T	S2/P1	S3/P2	P-NC			
Class Design Strength (28 days, psi)	4500	4000	3500	3500	3000	3500			
Water/Cement Ratio (max)	0.44	0.45	0.45	0.45	0.45	0.45			
Cementitious Material Content (lb/yd³)	658	564-612(b)	526-612(b)	526-612(b)	517-564(b)	658(c)			

- a. Water reducing or water reducing retarding admixtures is required.
- b. The maximum cementitious material content may be reduced by 7 percent if a water reducing or water reducing retarding admixture is used.
- c. Mid range water reducer: required for structure adjustments and concrete pavement patches.

All concrete mixtures shall utilize one of the requirements listed below to mitigate any potential Alkali Silica Reactivity (ASR):

1. Between April 15th and October 15th, substitution of 25% of the total cementitious material by weight with Class F Fly Ash (ASTM C 618). The percent calcium oxide (CaO) for the fly ash shall be less than 15% and the available alkalis shall not exceed a maximum of 1.5%. Mill test reports for the fly ash must be submitted to the Testing Office. Fly ash is not allowed for prestressed concrete beams.

- 2. A substitution of 35% of the total cementitious material by weight with Ground Granulated Blast Furnace Slag (GGBFS) Grade 100 or 120 (ASTM C 989).
 - (a) Between November 1st and March 31st, unless otherwise directed by the Engineer, a non chloride accelerator will be added to the concrete mixture. The accelerator shall be from the approved materials list prescribed in the MDOT Material Sampling Guide.
- 3. Use of a cement with an alkali level of less than 0.60% (ASTM C150) expressed as equivalent Sodium Oxide (% Na₂O + 0.658 × % K₂O). The total alkali content from the Portland Cement shall not exceed 3.0 lbs./cyd. (Na₂O eq). Mill Test Reports verifying the total alkali content of the Portland Cement must be submitted to the Testing Office.

Questions?

dhollingsworth@miconcrete.net 734.216.1221

ALSO, PLEASE SEND <u>SUGGESTIONS</u> FOR ADDITIONAL CONCRETE WEBINAR TOPICS!

For the current webinar schedule:

https://info.miconcrete.org/virtual-learning

